Physics with Cold Atoms

Asimina Arvanitaki Stanford University

Outline

- 1. Atom Interferometry
- 2. Testing (long-distance) General Relativity
- 3. Gravity waves
- 4. Testing short-distance gravity
- 5. Testing Atom Neutrality

Light Interferometry

Space-space Interferometry

accuracy of measurement

$$\frac{\Delta L}{L} \sim \frac{\lambda}{L} \times \text{(phase resolution)}$$

Space-time Interferometry

A new tool for testing fundamental physics

- Earth Moon distance "arm length"
- Unprecedented precision: 10⁻¹⁷ (Nobel lectures: 1997, 2001, 2005)
- Atoms' deBroglie wavelength is a smaller yardstick than optical light wavelength

$$\frac{1}{10 \text{ keV}} \text{ vs } \frac{1}{10 \text{ eV}}$$

- Atoms have many "handles" (atoms vs neutrons)
- Table-top experiment ⇒ controlled conditions (atoms vs astrophysics)

Testing the Equivalence Principle and General Relativity

Savas Dimopoulos Peter Graham Jason Hogan Mark Kasevich

Atomic Equivalence Principle Test

Initial accuracy $\sim 10^{-15}$ Compared to Lunar Laser Ranging $\sim 3\times 10^{-13}$

Testing Gravity at Large Distances

Atom interferometry measures minute accelerations

signal
$$\sim \int L_{\rm fast} dt - \int L_{\rm slow} dt$$
 $\left(L = \frac{mv^2}{2} - mgh\right)$
 $\sim mg\Delta hT \sim mg(v_{\rm fast} - v_{\rm slow})T^2$

Testing Gravity at Large Distances

Atom interferometry measures minute accelerations

signal
$$\sim \int L_{\rm fast} dt - \int L_{\rm slow} dt$$
 $\left(L = \frac{mv^2}{2} - mgh\right)$
 $\sim mg\Delta hT \sim mg(v_{\rm fast} - v_{\rm slow})T^2$
 signal $\sim kgT^2$

Current
$$\sim 10^{-11}g$$

Future
$$\sim 10^{-17}g$$

Testing Gravity at Large Distances

Atom interferometry measures minute accelerations

signal
$$\sim \int L_{\rm fast} dt - \int L_{\rm slow} dt$$
 $\left(L = \frac{mv^2}{2} - mgh\right)$
 $\sim mg\Delta hT \sim mg(v_{\rm fast} - v_{\rm slow})T^2$
 signal $\sim kgT^2$

Current
$$\sim 10^{-11}g$$
 Future $\sim 10^{-17}g$
$$\frac{dv}{dt} = -\nabla\phi + \boxed{\rm GR}$$

$$\phi = G_N \frac{M_e}{R_e}$$

Post-Newtonian Approximation

Particle equation of motion:

$$\frac{d\vec{v}}{dt} = -\nabla\phi$$

$$-\nabla\phi^2$$

$$-\vec{v}^2 \nabla \phi$$

Newton's Gravity

Gravitates Gravitates

Kinetic Energy Gravitates

Future Prospects

Experimental Precision for:	Principle of Equivalence GR effects	
current limits	3×10^{-13}	10^{-4} - 10^{-5}
AI initial	10^{-15}	10^{-1}
upgrade	10^{-16}	10^{-2}
future	10^{-17}	10^{-4}
far future	10^{-19}	10^{-6}

10 m experiment

 $200 \hbar k \text{ (LMT)}$ beamsplitters

100 m experiment

Heisenberg statistics

Gravity Waves

Savas Dimopoulos
Peter Graham
Jason Hogan
Mark Kasevich
Surjeet Rajendran

Gravity Wave Signal

$$ds^{2} = dt^{2} - (1 + h\cos(\omega(t - y)))dx^{2} - dy^{2} - (1 - h\cos(\omega(t - y)))dz^{2}$$

laser ranging an atom (or mirror) from a starting distance L sees a position:

$$x \sim L(1 + hcos(\omega t))$$

and an acceleration $a \sim hL\omega^2 cos(\omega t)$

Gravity Wave Signal

$$ds^{2} = dt^{2} - (1 + h\cos(\omega(t - y)))dx^{2} - dy^{2} - (1 - h\cos(\omega(t - y)))dz^{2}$$

differential measurement with two atoms to cancel systematics

sensitivity increases with L and T up to T,L $\sim 1/\omega = \lambda$

GW phase $\sim kaT^2 \sim khL\omega^2\cos(\omega t)T^2$

Sensitivity

on earth $\omega \sim 1 \text{ Hz}$

in space $\omega \sim 10^{-2}$ to 1 Hz

experimental sensitivity for continuous sources

waves from solar mass binaries:

L \sim 10 m and LMT $h \sim 10^{-17}$

L~10 km $h \sim 10^{-20}$

Heisenberg statistics $h \sim 10^{-22}$

galaxy $h \sim 10^{-19}$

cluster $h \sim 10^{-22}$

opens a new window for stochastic gravity wave searches from phase transitions, inflation, cosmic strings...

Testing Short-Distance Gravity

Savas Dimopoulos

Peter Graham

Jason Hogan

Mark Kasevich

Jay Wacker

Searching for a Yukawa Force

$$V = -\alpha \frac{G_N m e^{-\frac{r}{\lambda}}}{r}$$

Reach: $\alpha \sim 10^{-5}$

for $100 \, \mu \text{m} < \lambda < 1 \, \text{m}$

Sensitivity

$V = -\alpha \frac{G_N m e^{-\frac{r}{\lambda}}}{2}$ AI Sensitivity

$V = -\alpha \frac{G_N m e^{-\frac{r}{\lambda}}}{}$

Axion reach

Testing Short-Distance Gravity with BEC's

Savas Dimopoulos Andy Geraci (2003)

Experimental Concept

- 1)Trap BEC near surface by laser
- 2) accumulate differential phase shift due to interaction with Au vs. Ag
 - 3) Turn off laser, allow BECs to interfere

$V = -\alpha \frac{G_N m e^{-\frac{r}{\lambda}}}{r}$ Current bounds

$V = -\alpha \frac{G_N m e^{-\frac{r}{\lambda}}}{r}$ BEC sensitivity

Testing Atom Neutrality

AA
Savas Dimopoulos
Andrew Geraci
Jason Hogan
Mark Kasevich

The mystery of charge quantization

u u d

proton charge = - electron charge 2 u+d = - e with u = - d/2 = 2e/3

Coincidence?
Not in a GUT theory

The mystery of charge quantization

u u d

proton charge = - electron charge 2 u+d = - e with u = - d/2 = 2e/3

Coincidence?
Not in a GUT theory

But GUT symmetry must be broken

Maybe charge quantization violated

θ-terms and violation of charge quantization

In a theory of a gauge U(1) with electric and magnetic charges

$$\nabla \cdot \vec{B} = \rho_m \neq 0$$
$$\vec{E} = -\nabla \phi$$

magnetic charges source electric fields in the presence of a θ -term

$$\theta F \wedge F = \theta \vec{E} \cdot \vec{B} = \theta \phi \nabla \cdot \vec{B}$$
$$= \theta \phi \rho_m$$

θ-terms and violation of charge quantization

If ordinary particles carry magnetic charge under $U(1)_1$ and electric charge under $U(1)_2$

$$\nabla \cdot \vec{B}_1 = \rho_{m_1} \neq 0$$
$$\vec{E}_2 = -\nabla \phi_2$$

electric charges shift in the presence of a θ -term coupling

$$\theta F_2 \wedge F_1 = \theta \vec{E}_2 \cdot \vec{B}_1 = \theta \phi_2 \nabla \cdot \vec{B}_1$$
$$= \theta \phi_2 \rho_{m_1}$$

Testing Atom Neutrality

Testing Atom Neutrality

Electric Aharonov-Bohm Effect

$$\Delta \phi \sim \epsilon eVt$$

Atom interferometry bounds on charge per nucleon:

$$\epsilon \sim 10^{-30}$$

Current bounds: $\epsilon \sim 10^{-22}$

Physics Prospects for Cold Atoms

- Equivalence principle
- General Relativity tests
- Gravity wave detection
- Short-distance gravity
- Tests of atom neutrality

Physics Prospects for Cold Atoms

- Equivalence principle
- General Relativity tests
- Gravity wave detection
- Short-distance gravity
- Tests of atom neutrality
- Measurement of G_N
- Electric Dipole Moment searches
- Time variation of fundamental constants
- Tests of Quantum Mechanics (linearity, decoherence)...
- Cave detection, ship container characterization...

We are about to enter a golden era for atom interferometry, where technological and scientific applications will mature to (hopefully) have impact beyond the narrow confines of atomic physics

Atom Interferometry

Space-time Interferometry

controllable parameters

v_L initial velocity

initial height momentum splitting

interrogation time

Raman Transition

$$k_{eff} = \omega_1 + \omega_2 \sim 1 \text{ eV}$$

 $\omega_{eff} = \omega_1 - \omega_2 \sim 10^{-5} \text{ eV}$

Raman Transition

 $\pi/2$ ulse is a beamsplitter π oulse is a mirror

Earth Backgrounds

vibrations

requires damping to \sim pm at 10^5 Hz

laser phase noise

control to µrad at 105 Hz

timing errors

control common launch velocity to ~ 1 cm/s

time-varying gravity gradient

earth vibrations naturally $< 10^{-15}$ m²/Hz at 1 Hz (Fix '72) leads to GW detection down to h $\sim 10^{-22}$ (Hughes and Thorne '98)

launch position uncertainty coupled to gravity gradient

cancels common mode between two interferometers, lock initial launch positions with optical lattice

variable earth rotation rate

at 1 Hz well below required nrad/s uncertainty

all backgrounds seem controllable down to shot noise level

Space Backgrounds

vacuum quality

space vacuum equivalent better than 10⁻¹⁰ torr satellite debris?

earth + moon gravity gradient

either earth orbit at moon distance or solar orbit

satellite gravity gradient

either do experiment $\sim 10m$ away or control satellite position to 10^{-6} m s⁻²/Hz^{1/2} (far below LPF)

ambient magnetic field

~ 1 nT, easily overcome by applied bias field

all backgrounds seem controllable down to shot noise level

Gravitomagnetism

Coriolis
$$\vec{a}_{cor} = 2\vec{v} \times \vec{\omega}$$

Lense–Thirrin
$$\alpha = \vec{v} \times (\nabla \times \vec{\zeta}) \sim a_{\rm cor} \phi$$

Simultaneous vertically displaced atom gyroscopes

Gravitomagnetism

with initial dimensions, this is a factor \sim 10^4 below precision